Belief updating in multiply sectioned Bayesian networks without repeated local propagations

نویسنده

  • Yang Xiang
چکیده

Multiply sectioned Bayesian networks (MSBNs) provide a coherent and flexible formalism for representing uncertain knowledge in large domains. Global consistency among subnets in a MSBN is achieved by communication. When a subnet updates its belief with respect to an adjacent subnet, existing inference operations require repeated belief propagations (proportional to the number of linkages between the two subnets) within the receiving subnet, making communication less efficient. We redefine these operations such that two such propagations are sufficient. We prove that the new operations, while improving the efficiency, do not compromise the coherence. A MSBN must be initialized before inference can take place. The initialization involves dedicated operations not shared by inference operations according to existing methods. We show that the new inference operations presented here unify inference and initialization. Hence the new operations are not only more efficient but also simpler. The new results are presented such that their connection with the common inference methods for single Bayesian networks is highlighted. keywords: Bayesian networks, probabilistic reasoning, multi-agent inference, distributed inference, uncertain knowledge representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Belief Updating in Msbns without Repeated Local Propagations

We redeene inference operations for multiply sectioned Bayesian networks (MS-BNs). When two adjacent subnets exchange belief, previous operations require repeated belief propagations within the receiving subnet. The new operations require such propagation only twice. We prove that the new operations do not compromise the coherence while improving the eeciency. A MSBN must be initialized before ...

متن کامل

Optimization of Inter-agent Belief Updating in Multiply Sectioned Bayesian Networks

Recent developments show that Multiply Sectioned Bayesian Networks (MSBNs) can be used for diagnosis of natural systems as well as for model-based diagnosis of artiicial systems. They can be applied to single-agent oriented reasoning systems as well as multi-agent distributed probabilistic reasoning systems. Belief propagation between a pair of subnets in a MSBN plays a central role in maintena...

متن کامل

Fault-Tolerant Multi-Agent Exact Belief Propagation

Multiply sectioned Bayesian networks (MSBNs) support multiagent probabilistic inference in distributed large problem domains, where agents (subdomains) are organized by a tree structure (called hypertree). In earlier work, all belief updating methods on a hypertree are made of two rounds of propagation, each of which is implemented as a recursive process. Both processes need to be started from ...

متن کامل

Optimization of Inter-Subnet Belief Updating in Multiply Sectioned Bayesian Networks

Recent developments show that Multiply Sectioned Bayesian Networks (MSBNs) can be used for diagnosis of natural systems as well as for model-based diagnosis of artificial systems. They can be applied to single-agent oriented reasoning systems as well as multiagent distributed reasoning systems. Belief propagation between a pair of subnets plays a central role in maintenance of global consistenc...

متن کامل

Updating Probabilities in Multiply-Connected Belief Networks

This paper focuses on probability updates in multiply-connected belief networks. Pearl has designed the method of conditioning, which enables us to apply his algorithm for belief updates in singly-connected networks to multiply-connected belief networks by selecting a loop-cutset for the network and instantiating these loop-cutset nodes. We discuss conditions that need to be satisfied by the se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2000